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Abstract: The well-known sequential Monte Carlo simulation is a powerful tool to analyse short-term reliability of complicated
composite power system. However, the corresponding computational burden is tremendous when applied to a highly reliable
system. Aiming at improving the simulation efficiency, an adaptive importance sampling technology is proposed in this study.
The proposed method, on the basis of component state duration sampling technique combined with cross-entropy method, is
able to provide reliability evaluation of highly reliable non-homogeneous Markov system. The Weibull and lognormal
distributions are considered to describe repair time of individual components comprising a system. Through the case studies
conducted on a reinforced Roy Billinton reliability test system, it is validated that the proposed method is effective and of
high efficiency and the efficiency gain against the crude sequential Monte Carlo simulation is robust to variation of load level
and lead timescale. The proposed method is useful and efficient to timely monitor the system operating pressure under
different lead timescales.
Nomenclature
Γ
 system state transition path

TL
 lead time in hour

TGi
 duration in hour of ith random realisation of Γ

where all the states but the last one are normal
system operating state
TTF
 time to fail

TTR
 time to repair

CSMC
 crude sequential Monte Carlo

CSDS
 component state duration sampling

SSTS
 system state transition sampling

mi
 index number of state transition from working to

failed state of component i

ni
 index number of state transition from failed to

working state of component i

Mi,G
 total number of state transitions of component i

from working to failed state in path Γ within TL.

Ni,G
 Total number of state transitions of component i

from failed to working state in path Γ within TL

Mi,G
 Total number of state transitions of component i

from working to failed state in path Γ within TΓ

Ni,G
 Total number of state transitions of component i

from failed to working state in path Γ within TΓ

tf ,mi
time to fail in hour associated with mth
i transition
tr,ni
 time to repair in hour associated with nthi transition
TCi
IET Ge
accumulated time in hour of state transition
simulation of component i, starting at t = 0
t
 the shape parameter of Weibull distribution or the
standard variance parameter of Gaussian
distribution
ξ
 the scale parameter of Weibull distribution or the
mean parameter of Gaussian distribution
S(Γ)
 real function describing the reliability metric of a
realisation of path Γ, for example, loss of energy
in MWh
co
 coefficient of variance

S
 set of samples, each of which is simulated based

on the CSDS method within TΓ

S

′
 set of samples, each of which is simulated based
on the CSDS method within TL
SIS
 set of samples, each of which is simulated based
on the importance sampling technique within TL
N
 number of simulation runs of the CSMC method
1 Introduction

Power system short-term reliability evaluation is of utmost
importance to power utilities confronted with power system
operation variability and uncertainty arising from
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deregulation and renewable energy penetration [1]. Electric
entities and independent system operators need to be
carefully informed of system adequacy, so as to satisfy,
with budget constraints, customer demand for higher
service reliability and power quality. There exist many
analysis tools for reliability evaluation, which generally fall
into two categories, namely, analytical method [2, 3] and
numerical simulation [4–6]. The Monte Carlo method is a
well-known powerful tool to analyse the reliability of a
complex system for its advantage of robustness to the
dimension of the problem, capability to handle
contingencies of all orders and simplicity in
accommodating various power system models and operation
modes. In terms of simulation mechanisms, there are two
different sorts of Monte Carlo techniques: non-sequential
Monte Carlo and sequential Monte Carlo. It is well
recognised that, for complex system reliability evaluation,
to calculate some reliability indices without bias, such as
failure cost involving state duration, loss of load duration
and loss of load expectation and so on entails sequential
Monte Carlo method [7] in terms of its capability of
simulating system stochastic responses chronologically.
Nonetheless, both of these two sorts of techniques are
confronted with a heavy simulation computational burden
as a large number of system states must be sampled before
the indices converge.
Tremendous work has been devoted to the improvement of

computational efficiency of Monte Carlo methods, especially
for the non-sequential Monte Carlo method, such as that
reported in [4, 5, 8–11] and the references therein.
Recently, an optimisation method proposed in [12]
accelerates evaluation of the failure states of composite
power system by eliminating redundant line flow
constraints. This method can be combined with the existing
state space sampling techniques to improve reliability
evaluation efficiency. With respect to the crude sequential
Monte Carlo (CSMC) method, a pseudochronological tool
[13] and an algorithm for reliability simulation of
equipment and systems by using a parallel computing
environment [14] have been proposed. A sort of biasing
technique is proposed in [15] for efficiently simulating
system unavailability by uniformly distorting distribution of
system state-transition time, along with discrete probability
of selecting the component undergoing transition. However,
the uniform distortion renders the occurrences of the state
transition paths equally weighted, which should not be the
case in terms of severity of the system failure state.
Another possible solution to overcome the inefficiency

problem is to utilise the importance sampling technique.
The crux of the matter when applying the importance
sampling technique is to find the optimal
change-of-measure. Recently, a technique combining the
CSMC method and cross-entropy (CE) [16] method is
proposed [17] to modify the chronological evolution of the
system, as a result of which, the simulation efficiency and
convergence properties are improved prominently for
generating capacity reliability evaluation. With respect to
the issue of sequential short-term reliability evaluation of
composite power system, several troublesome difficulties
need to be considered if the importance sampling technique
is intended to be employed:
(1) Identification of a critical set consisting of system failure
states, load-shedding for instance, involves complicated
analysis. As a result, it is impossible to precisely recognise
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the critical set in advance unless a simulation study is
conducted.
(2) High-dimensional parameter space may result in
degeneration of the importance sampling method, viz. curse
of dimensionality of likelihood ratios.
(3) Computation of a state-dependent cost usually involves
remedial action analysis including power flow and/or
optimal power flow analysis. Consequently, it should be
avoided as much as possible to generate a huge pool of
simulation samples.
(4) Stochastic operation characteristics of a realistic system
would be described by the non-homogeneous Markov
process where repair time of a comprising component is not
exponentially distributed.

A critical issue for the importance sampling technique
applied in reliability evaluation for a large composite power
system is the curse of dimensionality which mainly results
from a large number of parameters involved in the
concerned problem. One possible approach as a
compromise to handle the problem is to reduce the number
of parameters by virtue of network reduction techniques
[18–20]. In this paper, the curse of dimensionality will not
be discussed. We focus on the other troublesome difficulties
and propose a novel adaptive importance sampling
technique for short-term sequential reliability evaluation of
composite power system whose operational behaviour is
represented by the non-homogeneous Markov process.
The remaining parts are organised as follows: issues

associated with short-term reliability evaluation of
composite power system are reviewed first in Section 2,
followed by a discussion of the probabilistic models
representing the component operation characteristics in
short-term reliability analysis in Section 3, then a CSMC
technique, namely component state duration sampling [21],
adapted for system reliability evaluation within a fixed lead
time is presented in Section 4. In the sequel section,
theoretical foundation, basic idea and realisation steps of
the proposed method are outlined, which is followed by a
simple numerical example to illustrate necessity and
unbiasedness of the proposed method applied on short-term
reliability evaluation in Section 5.5. Finally, case studies are
conducted on a reinforced Roy Billinton reliability test
system (R-RBTS), through which it is shown that the
proposed method is effective and of high efficiency.
2 Issues of short-term reliability evaluation
of composite power systems

Short-term reliability evaluation can be used to measure the
ability of a system withstanding unexpected system
interruptions that will result from imminent probabilistic
disturbances within a short time period in the near future.
The considered short time period is the so-called lead time.
The definition of the timescale of lead time varies from
system to system because of different evaluation purposes.
Generally used values of the lead time for power system
short-time reliability evaluations range typically from 10
min to 10 h [22]. Empirical formulae defined in [23] to
estimate the convergence time of loss of load probability
can be used for lead timescale planning in practice
according to specific system operating conditions.
Reliability evaluation can be classified into adequacy
analysis and security analysis, depending on the aspect of
concern in case a disturbance occurs. In the short-term
731
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Fig. 1 MCS-based analysis framework for short-term reliability evaluation
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adequacy evaluation, the sufficiency of facility online
capacity to meet the system load demand in static system
conditions is the essential concern. It is assumed that the
system subjected to a disturbance can automatically restore
or be manually controlled to be stable, that is to say, such
events as time-dependent bus voltage collapse and generator
rotor angle instability would not be triggered by the
perturbation, and remedial actions such as load shedding,
transformer tap changing and/or re-dispatching generator
outputs can be thereof conducted anyway in time to bring
an occurred abnormal state back into a stable equilibrium
point. Owing to the short time-scale considered in the
short-term reliability evaluation, the failure rate of a
transmission or distribution line is not a steady-state value,
but a function of the environment it is exposed to, for
instance, it can be much higher in adverse weather than in
normal weather. In addition, such events as scheduled
outages, planned maintenance and postponed failures [24]
should not be considered and the forecasted load level
could be regarded as constant, or random but complying
with a certain distribution, for example, Gaussian distribution.
In terms of the complexity of composite power systems, the

sequential Monte Carlo method is popularly resorted to for
the short-term reliability evaluation of the features of easy
implementation, ergodicity and robustness to system
dimension. The necessity of the sequential Monte Carlo
method applied to short-term reliability studies is illustrated
in Section 5.5. A flowchart of the analysis based on the
Monte Carlo method for the short-term composite power
system reliability evaluation is schematically shown in
Fig. 1. Once the data of the system configuration and
parameters of the components as well as forecasted load
curve within each lead time are ready, Monte Carlo
Simulation is conducted to simulate the system states in a
non-sequential or sequential manner according to transient
probabilities or transient state transition rates of the
components, and each drawn state is identified as either a
successful state or a failed state by virtue of the power flow
and/or the optimal power flow analysis. The stop criteria
can be defined on a limitation of the number of simulation
runs or the co [25] of a certain index. The evaluation task is
repeated for each lead time one by one, where the data
732
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relevant to system operational conditions will be necessarily
reloaded before a new evaluation task begins. The
evaluation process ceases until hazard prevention strategies
based on the released indices become necessary.
3 Component probabilistic function models

It is a common practice to assume that both time-to-fail’s
(TTFs) and time-to-repair’s (TTRs) of components
comprising a system are exponentially distributed for
mathematical convenience in reliability evaluation. As a
result, the system is a homogeneous Markov system.
However, because of a time-varying operation condition,
the failure rate of a component could not be represented by
its average value as used in the long-term evaluation;
moreover, component repair time is validated by many
researches to be occasionally illustrated as some other
distributions [26–28], such as lognormal or Weibull.
Consequently, the sequential system state-transition can be
considered as the non-homogeneous Markov process. In
this paper, within the interval of each lead time, the failure
rate of a component is assumed to be a constant, and
additionally, each component is assumed to operate
independently in its useful life period and can be restored to
an ‘as bad as old state’ by assumption of minimal corrective
maintenance upon a failure. [In preventive maintenance
policy studies, it is commonly assumed for minimal repair
models that the system failure rate function is not disturbed
by any minimal corrective maintenance, that is, the system
could be regarded ‘as bad as old’ after minimal corrective
maintenance [29].] That is, the individual component
operational process is regenerative, hence the semi-Markov
process can be used to model the probabilistic
characteristics of the whole system operation [30]. The
semi-Markov process is an extension of the homogeneous
Markov process. For a Markov process, if the transition
time of at least one of its states does not follow an
exponential distribution, it is called the semi-Markov
process. One general method to simulate a system state
transition path, as we shall discuss in Section 4, is to
independently draw state durations of each comprising
IET Gener. Transm. Distrib., 2014, Vol. 8, Iss. 4, pp. 730–741
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component by using the CSMCmethod with TTF and/or TTR
probability distributions of those components.
In this paper, both Weibull and lognormal distributions are

considered for component TTRs without loss of generality.
The probability density functions (PDFs) of the two
distributions are uniformly denoted by fr(t, ξ, t) for brevity
and expressed as follows

fr(t, j, t) =
t
j (t/j)

t−1 e− t/j( )t for Weibull

1���
2p

√
tt
e−(1/2) ( ln t−j)/t( )2 for log normal

⎧⎨
⎩ (1)

where ξ and t represent either the scale and shape parameters
in the case of Weibull distribution, or in the case of lognormal
distribution, the mean and standard deviation parameters of
associated normal distribution. In addition, component TTF
is assumed to follow the exponential distribution with λ
representing the corresponding failure rate.

4 Component state duration sampling
technique

There exist two sorts of well-developed CSMC methods for
reliability evaluation: the system state-transition sampling
(SSTS) [31] method and component state duration sampling
(CSDS) method [21]. The SSTS method works on
conditions where the system states are Markov states and
the duration distributions of all possible states are known in
advance. It is easy to satisfy the condition by assuming the
state duration of each comprising component to be
exponentially distributed. This results in that each possible
system state duration also follows exponential distribution,
and the system state transition rate is thereof the sum of all
the component state transition rates relevant to the current
states of the components residing in this system state. In the
situation that the component TTR follows the Weibull
distribution, an aggregate Weibull [30] approach based on
the SSTS method could be utilised to deal with the
sequential simulation for the non-homogeneous system if
the concerned system failure events are not rare;
nevertheless, the resulting duration distribution of a system
state is too complicated for the importance sampling
technique to tackle in the case of rare system failure events.
By contrast, the CSDS method is more competent to
accomplish the simulation task, with no need to deduce the
probability distributions of system state transition and
transition time but the state and duration distributions of
individual comprising component, which can be acquired
more straightforwardly.
Supposing a system composed of binary Markovian state

components with working (W) and failed (F) states,
respectively, (initially in W state), all the components
Fig. 2 Schematic of the CSDS method
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operate independently, the CSDS procedure for the system
reliability evaluation within a fixed lead time TL is
schematically shown in Fig. 2 and the corresponding steps
of the procedure read as follows:

Step 1: Initialise the count of the number of simulation, j = 1.
Step 2: Initialise the simulation starting time, t = 0, state
transition index number of W state to F state, mi = 0, index
number of F state to W state, ni = 0 with i∈ 1, …, Ω where
Ω represents the number of components comprising the
system.
Step 3: Update mi: =mi + 1 and randomly produce a TTF for
component i and record it as tf ,mi

,

tf ,mi
= min

(
TL, − ln

(
umi

)
/li

)
, i∈ 1, …, Ω, where umi

is a
randomly sampled variable distributed uniformly on (0, 1),
and let TCi represent the accumulated time of state
transition simulation of component i and TCi := tf ,mi

, i∈ 1,
…, Ω.
Step 4: Let the duration of the current system state at t be
equal to TCk− t where k = argmin i ≤ V{TCi}. The
system state at t and the resulting state duration TCk− t
combined with a forecasted load level at the current time
point t are used for the state reliability metric calculation,
for example, energy unserved in megawatt per hour over
TCk− t. Renew t: = TCk. If t = TL, sum all the calculated
quantities over TL to obtain a reliability metric realisation of
random system state transition path, denoted by S(Γj) with
Γj∈ Γ1, Γ2, …, ΓN defined as the random system state
transition path within TL where N is the cardinality of the
pool of simulated realisations of path Γ, and then go to Step
5; otherwise, go to Step 6.
Step 5: If a pre-defined convergence condition, such as co for
the support of S(Γ) is satisfied, stop the simulation; otherwise,
j: = j + 1, go to Step 2. The co related with the support of S(Γ)
can be calculated by

co =
���������������������������∑N

i=1 E S G( )[ ] − S Gi

( )( )2√
�����������
N N − 1( )√

E S G( )[ ] (2)

where E(·) denotes the expectation operator, and according to

the central limit theorem, E S G( )[ ] ≃
∑N

i=1
S Gi( )

N when N is
large enough.
Step 6: If the state of component k is W just before t, change
the state to F, and go to Step 7; otherwise, change the state to
W, and go to Step 8.
Step 7: Update nk: = nk + 1 and produce a TTR denoted by
t′r,nk according to the TTR distribution of component k by
means of the inverse-transform technique. Let

tr,nk = min t′r,nk , TL − TCk

( )
, and renew TCk = TCk + tr,nk ,

then return to step 3.
Step 8: Update mk: =mk + 1 and produce a TTF denoted by
t′f ,mk

according to the TTF distribution of component k by
means of the inverse-transform technique. Let
tf ,mk

= min
(
t′f ,mk

, TL − TCk

)
, and renew TCk = TCk + tf ,mk

,
then return to step 3.

It can be observed from Fig. 2 that the CSDS procedure
finally splits a lead time into smaller time intervals with
variant lengths, for each small time interval the begin or
end point is the time instant just one component of the
whole system changes its state, whereas within each time
733
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interval, the system resides in the state coming up at the begin
time point without variation. Moreover, it is worth
underlining that if a component initially failed at the
beginning of the simulation, historical duration of the failed
state of the component is needed to be subtracted from its
firstly drawn TTR [6].
5 CE-based adaptive sequential importance
sampling

5.1 CE method

Importance sampling has emerged in the literature as a
powerful tool to reduce the variance of an estimator, which
in the case of rare event estimation also means increasing
the occurrence rate of the rare event. If the expected value
E[S(x)] of a random variable x with density g is to be
computed then, the importance sampling method estimates

E S(x)
[ ] = S(x)

g(x)

h(x)
h(x)dx

by

E S(x)
[ ] = 1

n

∑n
i=1

S(xi)
g(xi)

h(xi)
(3)

where x1, …, xn are independently and identically distributed
copies of x, which are drawn from h(x). The aim is to find a
proper h(x) with which the importance sampling estimator
has small variance, specifically, if h(x) is taken as (4), then
the importance sampling estimator (3) has zeros variance.
The optimal change of measure, namely zero-variance PDF,
for general importance sampling problems can be given as

h(xi) = g(xi)
S(xi)

E S(x)
[ ] i [ 1, 2, . . . , n{ } (4)

By substituting (4) into (3), it can be noted that we need
nothing but only one simulation to obtain E[S(x)] (which
means the sample has zero variance); however, the exact h
(x) cannot be known before simulation, or even does not
exist for complex problems. Thus, h(x) needs to be
estimated beforehand. The existing methods to estimate h(x)
can be classified into parametric and non-parametric
methods [32]. The CE method falls into parametric method
combined with iterative sample learning mechanism. The
basic idea of CE is to find a surrogate PDF for h(x) which
is optimised to minimise the Kullback–Leibler distance
from h(x) [16]. Compared with other metrics quantifying
the distance between the two PDFs, CE is more applicable
to process the exponential distribution family [33].
Provided that β represents a vector of the original

parameters of a density function g(x;β) which is related
with a problem concerned, let g(x;α’) represent a PDF
stemming from the same distribution family from which g
(x;β) comes. Then, the parameter vector α’ can be
iteratively obtained through (5) by minimising the
Kullback–Leibler distance between g(x;α’) and the problem
734
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related zero-variance PDF

a′(n+1) = argmax
a′

× 1

N

∑N
i=1

S x(n)i

( ) g x(n)i ; b
( )

g x(n)i ; a′(n)
( ) ln g x(n)i ; a′

( )⎡
⎣

⎤
⎦
(5)

where the superscript (n) denotes the number of iterations,
α’(n) is a vector of nth distorted version of β and generally
α’(1)≡ β, N is a pre-defined total number of simulation
runs, x(n)i is a sample from g(x;α’(n)). In most practical
problems S(·)≥ 0, thus as long as lng(x;α’) is convex and
differentiable with respect to α’, the problem of solving (5)
will be equivalently reduced to solve the following equation

∑N
i=1

S x(n)i

( ) g x(n)i ; b
( )

g x(n)i ; a′(n)
( ) ∂ ln g x(n)i ; a′

( )
∂a′ = 0 (6)

The nth iterative solution of (6) is just the general estimator
for optimal distorted parameters of the PDF from the
viewpoint of CE.

5.2 Ideas underlining the proposed method

According to (6), g(·) is a problem-specific function which is
critical for applying the cross-entropy technique. In terms of
the short-term reliability evaluation problem for a composite
power system within a fixed lead time, g(·) represents the
likelihood of random system transition path within a fixed
lead time TL. Provided that the components comprising the
system operate independently and each with binary
Markovian states, TTFs and TTRs of any individual
component within TL are also independent. Let PWi(·)
represent the probability mass function of state transition
number of component i from W to F and PFi(·) represent
that of component i from F to W within TL. Given each
component initially operates in W state, then, the likelihood
g(Γ;β) can be constructed as the following equation

g(G; b) =
∏V
i=1

∑1
mi=0

∑1
ni=0

Ji

× G; b|mi, ni
( )

PWi mi

( )
PFi ni
( ) (7)

where Ji(Γ;β|mi, ni) is a conditional PDF of the ith component
state transition path conditioned on transition number mi and
ni within TL and can be expressed as the following equation

Ji G; b|Mi,G, Ni,G

( ) = ∏Mi,G

mi=1

lie
−lit f ,mi

∏Ni,G

ni=1

fr tr,ni , ji, ti

( )
ki

× TL −
∑Mi,G

mi=1

tf ,mi
−
∑Ni,G

ni=1

tr,ni

( )
(8)

where β represents the set of original λ, ξ and t associated
with all the components, Mi,Γ is the number of state
transitions of component i from W to F related with Γ
within TL and Ni,Γ is that of component i from F to W. It is
noteworthy that in order to reduce variance, the
IET Gener. Transm. Distrib., 2014, Vol. 8, Iss. 4, pp. 730–741
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complement cumulative probability rather than PDF of the
last state duration beyond TL for component i [34] needs to
be taken into account, which is reflected as κi(t)

ki(t) =
e−litIW,i TL

( ) = 1
�Fr (t, ji, ti)IW,i TL

( ) = 0

{
(9)

where �Fr (t, ji, ti) =
�−1
t fr d, ji, ti

( )
dd and IW,i(TL) is an

indicator function which equals to 1 if component i is in W
state at TL, or otherwise 0.
As each Γk, k∈ 1, 2, …, N drawn by employing the CSDS

technique definitely yields Mi,Gk
and Ni,Gk

, for all i∈ 1,…, Ω.
Then

g(Gk ; b) =
∏V
i=1

Ji Gk ; b|Mi,Gk
, Ni,Gk

( )
PWi Mi,Gk

( )
PFi Ni,Gk

( )
(10)

If (10) was crudely substituted into (6), the resulting equation
is too complicated to be solved. However, if Mi,Gk

and Ni,Gk
(i∈ 1, …, Ω, k ∈ 1, …, N ) are not intended to be
optimised, that is, regarded as constant, then when
substituting (10) into (6) we can obtain a simplified version
(11) with Mi,Gk

and Ni,Gk
eliminated.

∑N
k=1

S′ G(n)
k

( ) ∂ ln J G
(n)
k ; a′

( )
∂a′ = 0 (11)

where

S′ G
(n)
k

( )
= S G

(n)
k

( )
J G

(n)
k ; b

( )
J G

(n)
k ; a′(n)

( )
Now, the paradigm to solve the optimal distorted parameters
used for CE-based importance sampling method has been
constructed. However, there is still another critical problem

about how to efficiently obtain G
(n)
k satisfying S′ a(n)k

( )
. 0

so as to make it feasible to update α’ according to (11). Our
idea is as follows: in the first iteration, n = 1, we draw a
moderate number of system state transition paths according
to the original parameters of the component reliability
models, where the predefined stop criterion to form each
drawn path is that any system failure state is hit in the
sampling process. Cost for each path is uniformly defined

as the unit value, that is, S G(1)
k

( )
; 1, k = 1, …, N. Hence,

the duration of each drawn path, denoted byTGk , is random.
We select drawn paths with relatively short duration and
1

∑ST(n)
k=1

S′ G
(n)
k ; b, a(n)

CE

( )

× ∑Ni,k

ni=1

1
tiopt

+ ln
tr,ni
jiopt

1− tr,ni
jiopt

( )tiopt
[ ]

− I

{

∑ST (n)

k=1
S′ G(n)

k ; b, a(n)
CE

( )

× ∑Ni,k

ni=1
− 1

jiopt
+ t

tiopt
r,ni j

−tiopt−1

( )
iopt

+ IF,i TG

(⎡
⎣

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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substitute them together with the corresponding S G(n)
k

( )
into (11), then the resulting solved parameters can be used
to simulate G

(2)
k . Repeating the procedure n− 1 times leads

to the observation that the system failure event is not rare
any more within the concerned lead time. Consequently, in
the next stage, a sufficiently large pool of Γ leading to

S′ G
(n)
k

( )
. 0 can be sampled efficiently, and the obtained

costs compensated by a proper likelihood ratio are finally
synthesised to yield the expectation quantity of interest
according to the philosophy of the importance sampling
technique. It can be noted that, in order to solve (11) in the
two stages, two stop criteria are defined to assist in
simulating the needed system state transition paths,
respectively: Criterion (1) hitting any system failure state,
and Criterion (2) reaching the end of a specific lead time.
For the sake of clarity, in the first simulation stage under
Criterion (1), the duration of Γk, TGk , should replace TL in
(8) to update the relevant parameters. Thus, the resulting
likelihood can be expressed as follows

Ĵ i (G; b) =
∏V
i=1

∏Mi,G

mi=1

lie
−lit f ,mi

∏Ni,G

ni=1

fr tr,ni , ji, ti
( )

× ki TGi −
∑Mi,G

mi=1

tf ,mi
−
∑Ni,G

ni=1

tr,ni

( )
(12)

where Mi,G and Ni,G are the quantity of the component i state
transitions from W to F and F to W related to Γ within TΓ,
respectively.
5.3 Optimal change of measure from the
viewpoint of CE

Substitute (1), (9) and (12) into (11), the final nth iteration
yields liopt , tiopt , jiopt as follows under Criterion (1)

liopt =
∑ST(n)

k=1 Mi,kS
′ G

(n)
k ; b, an

CE

( )
∑ST(n)

k=1 S′ G
(n)
k ; b, an

CE

( )∑Mi,k+IW ,i TGk

( )
mi=1 tf ,mi

(13)

where ST(n) stands for the quantity of simulated paths in nth
iteration, and Mi,k = Mi,Gk

.
In the case of Weibull distribution, miopt

and siopt
can be

obtained by solving the non-linear-equation set as (14) with
Newton–Raphson method (see (14))
where IF,i(·) = 1− IW,i(·)and Ni,k = Ni,Gk

.

F,i(TGk )
tr,Ni,k+1

jiopt

( )tiopt
ln

tr,Ni,k+1

jiopt

( )}
= 0

k

)
t
tiopt
r,Ni,k+1j

−tiopt−1

( )
iopt

⎤
⎦ = 0

(14)
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In the case of lognormal distribution, as the close-form

cumulative distribution function of normal distribution does
not exist, a polynomial approximation [35] is used instead

�F(z) = f (z)
∑5
i=1

bi
(1+ rz)i

(15)

where �F(z) = �1
z f (p)d(p), f (z) = 1/

����
2p

√
exp (− z2/2), r =

0.2316419, b1 = 0.31938153, b2 = −0.356563782, b3 =
1.781477937, b4 = −1.821255978 and b5 = 1.330274429.
Then, substituting (1) and (8) along with (15) into (6), tiopt
and jiopt can be obtained by solving the non-linear-equation
set as (16) with the Newton–Raphson method (see (16))
5.4 Procedure of adaptive sequential importance
sampling

As mentioned above, the failure of a highly reliably system is
a rare event with regard to small component failure rate,
consequently, the concerned sample of the system state
transition path with S(Γi) > 0 is scarcely captured within a
short lead time. To address this issue, adaptive sequential
importance sampling proposed in this paper is introduced in
as follows:

Step i: Initialise the parameters including: n = 1, the lead time
TL, a percentage variable ρ∈ [0.01, 0.1] and a smoothing
parameter ω = 0.1. a(n)

CE = K(b) where K(·) is a function
defined for initialisation of the parameters used for
sampling, which will be explained later.
Step ii: Independently simulate a set (S) of system state
transition paths via a similar procedure as the CSDS with
a(n)
CE, except that

The stop criterion for each drawn path is that a system failure
state is firstly triggered, with the epoch ∀Gi [ S denoted by
TGi .
In Step 4, S(Gi) W 1, ∀Gi [ S, is further multiplied by
Ĵ (Gi; b)/Ĵ Gi; a

(n)
CE

( )
to yield S′t(Gi).

Step iii: Arrange the set of TGi in ascending order to constitute
a new epoch set denoted by Y = t′1, t

′
2 . . .

{ }
. To compute
∑ST(n)
k=1

S′ G(n)
k ; b, a(n)

CE

( )[∑Ni,k

ni=1

lntr,ni−jiopt
t2iopt

+

× lntr,Ni,k+1−jiopt
t2iopt

+

∑5

j=1

jb

1+r lntr,Ni,k+

([
∑5

j=1
1+r lntr,Ni,k+

([

⎛
⎜⎜⎜⎜⎝
∑ST(n)
k=1

S′ G
(n)
k ; b, a(n)

CE

( ) ∑Ni,k

ni=1

lntr,ni−jiop

(
t3iopt

⎡
⎣

×
lntr,Ni,k+1−jiopt

( )2

t3iopt
− 1

tiopt
+

∑5

j=1

1

[
∑5

j=1
[

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

736
& The Institution of Engineering and Technology 2014
a(n+1)
CE according to (13), (14) and (16), gather S′t(Gi) with

corresponding Γi s satisfying tGi ≤ t′n where
n = sup {i, i ≤ r Y| |} with |·| representing the cardinality
operator. If the parameters l(n+1)

b , j(n+1)
b and t(n+1)

b are
found to be zero or infinite, then they will be left
unchanged as their last iteration solution in a(n)

CE.

Sequentially, a(n)
CE is further smoothly updated by (17). If

t′n . T , n = :n + 1 and return to Step ii; otherwise, continue

a(n+1)
CE := (1− v)a(n+1)

CE + va(n)
CE (17)

Step iv: Independently simulate a set (S′) of system state
transition paths via a similar procedure as the CSDS with
a(n)
CE, except that in Step 4, S(Γi) is further multiplied by

J (Gi; b)/J Gi; a
(n)
CE

( )
to yield S′IS(Gi). Compute a(n+1)

CE

according to (13), (14), (16) and (17).
Step v: Independently simulate a set (SIS) of system state
transition paths via a similar procedure as the CSDS with
a(n+1)
CE except that in Step 4, S(Γi) is further multiplied by

J (Gi; b)/J Gi; a
(n+1)
CE

( )
to yield S′IS(Gi). Finally, the desired

expected value is obtained through E S G( )[ ] =∑|SIS |
i=1 S′IS Gi

( )
/|SIS|, in the meanwhile, a predefined

convergency condition, such as co [see (2)] or a limited
number of simulation runs, is respected.

It is worth underlining that in principle, K(·) can be

arbitrarily defined as long as J G; a(1)
CE

( )
= 0 can hold ∀Γ,

S (Γ)J(Γ;β)≠ 0. With regard to the composite power system
short-term reliability evaluation, it is intuitive that a high
component failure rate results in high possibility of system
failure event, thus, Step i can be expedited by simply
defining K(·) as an operator to magnify the original
component failure rates by an equal multiple.

5.5 Simple numerical example

5.5.1 Discussions of sequential Monte Carlo applied
for short-term reliability evaluations: To appreciate
the differences between analytical, non-sequential
IF,i TGk

( )
.

jr/tiopt

1−jiopt

)
/tiopt

] j+1

bj

1−jiopt

)
/tiopt

]j

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦ = 0

t

)2

− 1
tiopt

+ IF,i TGk

( )

jbjr lntr,Ni,k+1−jiopt

( )
/t2iopt

+r lntr,Ni,k+1−jiopt

( )
/tiopt

] j+1

bj

1+r lntr,Ni,k+1−jiopt

( )
/tiopt

]j

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= 0

(16)

IET Gener. Transm. Distrib., 2014, Vol. 8, Iss. 4, pp. 730–741
doi: 10.1049/iet-gtd.2013.0279



Fig. 3 Component Uavg(1) simulated with the proposed method
against μ under logarithmic abscissa axis

Table 1 Component Uavgs obtained with different methods
under different magnitudes of μ

1 0.1 0.01 0.001

ANA1,% 0.2838 0.3577 0.3668 0.3678
ANA2,% 29.61 2.83 0.28 0.028
2*CSDS/
SSTS

0.25%
(3.4 × 10−3)

0.38%
(1.2 × 10−2)

0.67%
(3.9 × 10−2)

3.07%
(0.12)

2*Adaptive
IS

0.17%
(1.5 × 10−3)

0.21%
(2.2 × 10−3)

0.23%
(2.3 × 10−3)

0.24%
(2.8 × 10−3)

The component is assumed to initially operate in W state.

Fig. 4 Configuration of a hypothetical small series–parallel
system

www.ietdl.org

simulation and sequential simulation methods applied for
short-term reliability evaluations, in this subsection, we
compare these three methods by discussing the
unavailability under different lead timescales of a single
component which operates with binary Markovian states,
that is, W and F states. The relevant state transition rates are
assumed to be constant for all these concerned lead
timescales.
First, according to the Chapman–Kolmogorov equations,

the closed-form expressions of instantaneous state
probabilities of the component can be given as

PW TL
( )

PF TL
( )

[ ]
= 1

l+ m

× m+ le− l+m( )TL m− me− l+m( )TL
l− le− l+m( )TL l+ me− l+m( )TL

[ ]

× PW 0( )
PF 0( )

[ ]
(18)

where PW(TL) and PF(TL) denote the component
instantaneous W and F state probability at TL, respectively,
whereas λ and μ denote the component failure rate and
repair rate, respectively.
Next, in conventional short-term reliability evaluations of

the power system, since a concerned TL is normally small
(typical values as 10 min–10 h), it is accepted that no repair
is conducted during such a short interval, thus, the
unavailability is generally replaced with the outage
replacement rate [22] which is numerically equal to PF(TL)
by setting μ = 0 in (18). Specifically, given the component
operating in the W state at t = 0, the outage replacement rate
at TL is given by

ORR TL
( ) = 1− e−lTL (19)

Finally, we consider the average unavailability – another
useful statistic value affecting the component reliability [36]
– which is denoted by Uavg(TL) in this paper and can be
obtained from (18) as

Uavg TL
( ) = 1

TL(l+ m)

∫TL
0

PW(t) PF (t)
[ ]

× l 1− e−(l+m)t[ ]
l+ me−(l+m)t

( )
dt

(20)

Now, it is worth underlining that a snapshot of the component
reliability at TL can be described by (18) or (19) which can
both be obtained either by their individual analytical
expressions (seems only feasible for simple systems) or by
non-sequential simulation, whereas Uavg(TL) can be
considered as an indicator accounting for a sort of average
reliability within lead time TL. Uavg(TL) can be obtained
either by its analytical expression (also seems only possible
for simple systems) or by simulation only in sequential
manner in principle. The relationship between Uavg(TL) and
PF(TL) has been studied in many literatures, such as [4, 36].
Now, we compare the sequential and analytical methods by

calculating Uavg(TL) with different magnitudes of μ while
TL = 1 h and λ = 1 (1/h). The simulated magnitudes of
IET Gener. Transm. Distrib., 2014, Vol. 8, Iss. 4, pp. 730–741
doi: 10.1049/iet-gtd.2013.0279
Uavg(1) against different magnitudes of μ are plotted in
Fig. 3. It is worth underlining that each simulated Uavg(1) is
almost equal to the corresponding analytical solution
obtained from (20), thus the analytical solution for each
experiment point (Uavg, μ) will not be shown for
conciseness. However, we select four points from Fig. 3
and list the corresponding numerical results in Table 1 for
comparison. Uavg(1) computed by (20) is designated as
analytical method (ANA)1, which is taken as the
benchmark for comparison. As the repair rate is generally
neglected in short-term reliability evaluation, we also
compute Uavg(1) with μ = 0 and list the percentage error in
the second row, designated as ANA2, with respect to the
result of ANA1. It can be noted that the error of Uavg(1) is
29.61% when μ = 1 is neglected, and it decreases with μ.
The results obtained with different simulation methods are
also listed in the form of percentage error for comparison.
Each number in parenthesis is the corresponding co under
the simulation runs of 105. It can be concluded that the
sequential simulation methods can yield Uavg(t) without
bias, which suggests that the sequential simulation method
is useful to give average reliability information within a
short lead time for short-term reliability study, especially
for complicated systems.
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Table 2 Failure rates and parameters of the lognormal
distributions counting for repair time of the components in the
hypothetical series–parallel system

λ (1/h) ξ t

components 1 and 5 0.001 −0.0549 1.0510
components 2 and 6 0.002 −0.0607 1.1834
components 3 and 7 0.003 −0.5141 1.1516
components 4 and 8 0.004 0.7305 1.1062

Table 3 Simulated Uavgof the series–parallel system with
assumption of lognormal distribution for repair time of
components

CSMC Adaptive IS

Uavg (co = 0.05) 1.951 × 10−4 2.025 × 10−4

CPU time, s 64014 93.75
Uavg (co = 0.04) 2.135 × 10−4 1.917 × 10−4

CPU time, s 1.45 × 105 98.8

www.ietdl.org
5.5.2 Glance at efficiency: The last subsection explains
the virtues of sequential simulation methods by applying
them to a simple Markov process. This subsection further
explains the proposed algorithm by applying it to a
hypothetical series–parallel system, as shown in Fig. 4,
which operates in semi-Markov process. The studied system
consists of two identical subsystems working in parallel
each composed of four components. Subsystem 1 for
example functions if and only if both components 1 and 2
in series function and at least one of components 3 and 4 in
parallel functions. Each component identically operates with
binary Markovian states. Table 2 lists the component
original failure rates and parameters of the lognormal
distribution used to describe repair time which are extracted
from [27].
System average unavailability within a lead time of one

hour is simulated for illustration. It is obvious that
components 1, 2, 5 and 6 are more important to ensure the
operational reliability of the system. To decrease the
number of parameters to be solved, we fix t of the repair
time distribution for each component, and as a result (16)
can also be simplified to be solved. As expected, λ1, λ2, λ5
and λ6 are reasonably increased after Step iv of the
proposed method, and the final distorted solutions are
l1opt = 0.1881, l2opt = 0.5842, l5opt = 0.2161 and
l6opt = 0.505, respectively. Simulated results of Uavg

combined with CPU times are listed in Table 3. In addition,
the coefficient of variance, denoted by co, are also shown
in parenthesis. It can be noted from the results that the
proposed method can improve simulation efficiency
considerably. The CPU time by the proposed method is
shortened to 1/682 and 1/1467 of that by the CSMC
method under the conditions of co = 0.05 and co = 0.04,
respectively.
Table 4 Simulated indices under the condition of lognormal
distribution describing component repair time and peak load
level

EENS, MWh LOLE, h LOLF, occ./h

CSMC (0.085) 2.54 × 10−3 2.23 × 10−4 4.98 × 10−4

adaptive IS (0.01) 2.73 × 10−3 2.31 × 10−4 4.66 × 10−4
6 Application results

To evaluate the accuracy and efficiency of the proposed
method, tests are conducted on R-RBTS [37] which
consists of 10 units totalising 240 MW of installed capacity
with a peak load of 185 MW. Three indices, viz. EENS,
LOLE and LOLF, are calculated for illustrations. All the
738
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following calculations are coded in Matlab and conducted
on the platform of AMD Athlon II X4 640 3.00 Hz. AC
power flow and AC optimal power flow based on Matpower
are called for to analyse the sampled system states. Ratio of
figures of merit [38], denoted by Ef, is introduced as (21)
to measure efficiency gain of the proposed method with
respect to the CSMC method

Ef = tcs
2
c

tCEs
2
CE

(21)

where tc and tCE are the CPU times and σc and σCE are the
variances of reliability indices under the CSMC method and
the proposed method, respectively.
All the components are assumed to initially work in normal

state. The efficiency gain of the proposed method is firstly
investigated under different load levels in the two scenarios
of repair time distributions. Then, the system reliability
within different lead timescales and different load levels are
studied.

6.1 Efficient gain studies

The efficiency gain studies are conducted under four different
cases where the lead time is fixed to one hour:

(1) Peak load level with lognormal distribution describing
component repair time.
(2) Ninety percent of peak load level with lognormal
distribution describing component repair time.
(3) Peak load level with Weibull distribution describing
component repair time.
(4) Ninety percent of peak load level with Weibull
distribution describing component repair time.

For the sake of impartial comparison, each of the following
results is obtained by averaging 20 replicas under exactly the
same setting of condition as follows: |S| = |S′| = 600,
|SIS| = 100 000. As the simulation with the CSMC method
to obtain small co is very time-consuming, we limit the
total number of simulation runs designated as N with the
CSMC method to 500 000 for all the cases.
The original parameters of the lognormal distribution used

in this paper can be derived as (22) through the method of
moments in terms of the exponential distribution
assumption for each component repair time in the original
dataset

j = − ln m− 0.5 ln 2
t = �����

ln 2
√

{
(22)

where μ is the repair rate.
The simulation results for Case 1 are listed in Table 4 from

which it can be noted that the co (in brackets) reduces to 0.085
under the CSMC method, whereas in comparison, that under
the proposed method reduces to 0.01. The corresponding
IET Gener. Transm. Distrib., 2014, Vol. 8, Iss. 4, pp. 730–741
doi: 10.1049/iet-gtd.2013.0279



Fig. 6 LOLE against the number of simulation runs obtained with
the CSMC and the adaptive IS methods tested on R-RBTS, under the
conditions of lognormal distribution describing component repair
time and peak load level

Fig. 7 co and Ef against the number of simulation runs for R-RBTS
under the conditions of lognormal distribution describing
component repair time and 90% of peak load level

Fig. 8 LOLE against the number of simulation runs obtained with
the CSMC and the adaptive IS methods tested on R-RBTS, under the
conditions of lognormal distribution describing component repair
time and 90% of peak load level.

Fig. 5 co and Ef against the number of simulation runs for R-RBTS
under the conditions of lognormal distribution describing
component repair time and peak load level

Table 6 Simulated indices under the condition of Weibull
distribution describing component repair time and peak load
level

EENS, MWh LOLE, h LOLF, occ./h

CSMC (0.088) 2.313 × 10−3 2.029 × 10−4 4.54 × 10−4

adaptive IS (0.008) 2.563 × 10−3 2.097 × 10−4 4.439 × 10−4

www.ietdl.org
relationship between Ef and the number of simulation runs as
well as that between co and the number of simulation runs are
plotted together in Fig. 5, which shows that the proposed
method is more efficient than the CSMC method. Also,
there is a plot hereafter showing the estimate of LOLE with
respect to the number of simulation runs, which clearly
illustrates the increased convergence speed of the proposed
method (see Figs 6, 8, 10 and 12). It is worth mentioning
that as the system failure event is rare in such a short TL,
reliability metrics as LOLE obtained by the CSMC method
need a huge number of simulation runs, for example, 100
000 in our numerical studies, to converge (Fig. 6).
The simulation results for Case 2 are listed in Table 5. It

can be noted that the coefficient of variances under both
methods are larger than that in the case of the peak load
level; however, the results obtained with the CSMC method
are much less credible because of its high co. By observing
Table 5 Simulated indices under the condition of lognormal
distribution describing component repair time and 90% of peak
load level

EENS, MWh LOLE, h LOLF, occ./h

CSMC (0.2781) 6.72 × 10−4 1.61 × 10−4 3.64 × 10−4

adaptive IS (0.0124) 6.80 × 10−4 1.61 × 10−4 3.46 × 10−4

IET Gener. Transm. Distrib., 2014, Vol. 8, Iss. 4, pp. 730–741
doi: 10.1049/iet-gtd.2013.0279
the Ef in Figs. 5 and 7, it can be noted that the Ef increases
by approximately 1.5 times from 40 in the scenario of peak
load level to 100 in the scenario of 90% of peak load level
at the 100 000th simulation. It is validated that the proposed
method becomes even more efficient than the CSMC
method as the system reliability increases.
For Case 3 and Case 4, as exponential distribution is a

special case of Weibull distribution, the parameters of
Weibull distribution used for simulation can be readily
found to be t = 1 and ξ = 1/μ. The simulation results in the
two situations are listed in Tables 6 and 7, respectively, and
the corresponding Ef and co against the number of
simulation runs are potted in Figs. 9 and 11, respectively. It
can be noted that similar conclusions as those in Case 1 and
Case 2 can be drawn, except that Ef under the Weibull
739
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Table 7 Simulated indices under the condition of Weibull
distribution describing component repair time and 90% of peak
load level

EENS, MWh LOLE, h LOLF, occ./h

CSMC (0.091) 6.29 × 10−4 1.49 × 10−4 3.48 × 10−4

adaptive IS (0.01) 7.02 × 10−4 1.67 × 10−4 3.47 × 10−4

Fig. 9 co and Ef against the number of simulation runs for R-RBTS
under the conditions of Weibull distribution describing component
repair time and peak load level

Fig. 10 LOLE against the number of simulation runs obtained
with the CSMC and the adaptive IS methods tested on R-RBTS,
under the conditions of Weibull distribution describing component
repair time and peak load level

Fig. 11 co and Ef against the number of simulation runs for
R-RBTS under the conditions of Weibull distribution describing
component repair time and 90% peak load level

Fig. 12 LOLE against the number of simulation runs obtained
with the CSMC and the adaptive IS methods tested on R-RBTS,
under the conditions of Weibull distribution describing component
repair time and 90% peak load level.

www.ietdl.org
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distribution scenario is greater than that under the lognormal
distribution scenario at the same load level.
It can be concluded that the efficiency gain of the proposed

method is robust to system load levels and distributions
describing the component repair time. Also, it is interesting
to find that the magnitudes of the simulated indices are
sensitive to the system load level but seem irrelevant to the
distributions used to describe component repair time, and
the possible reason may be that the mean and standard
deviation parameters of the used distributions are equal,
respectively.
6.2 Effects of load level and lead timescale on
system reliability

We investigate indices associated with different lead
timescales under different load levels. Weibull distribution
is assumed to describe component repair time. The results
are plotted in Fig. 13. As for the case of the lognormal
distribution for component repair time, according to the
Fig. 13 Relationships between indices and lead time scales for
R-RBTS under different load levels

IET Gener. Transm. Distrib., 2014, Vol. 8, Iss. 4, pp. 730–741
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investigations conducted in the previous subsection, similar
results are obtained and not reported for conciseness.
It can be noted that the indices monotonically increase with

the lead timescale, and much more rapid increment is
observed in the case of a higher load level. The proposed
method is useful to monitor the system operating pressure
under different requirements for the lead timescale.

7 Conclusion

The short-term reliability evaluation of non-homogeneous
composite power systems is of practical significance for
modern electric power utilities. The sequential Monte Carlo
method can yield frequency and duration indices without
bias in a straightforward fashion, however, the
corresponding computational cost is prohibitively
expensive. In this paper, an adaptive importance sampling
is proposed to ameliorate this situation. Lognormal and
Weibull distributions are used to describe component repair
time. Through the case studies conducted on a reinforced
Roy Billinton reliability test system, it suggests that the
ratio of the figure of merit Ef with respect to the crude
sequential Monte Carlo in the case of peak load is greater
than 40 and 70 in the scenarios of the two component
repair time distributions, respectively, and increases
approximately by 1.5 times to 100 and 170 in the case of
90 percent of peak load, respectively. It validates that the
proposed method improves simulation efficiency
considerably and is robust to the system load levels and
component repair time distributions, and more efficient in
the case of Weibull distribution. Thus, the proposed method
is useful to monitor the system operating pressure under
different requirements for the lead timescale.
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